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Thus, we can define a spin (or Ising) pressure by 
Pr= - (aAJ/aV)T; this contribution to the total pres­
sure is directly related to the Ising energy Ur by 

Pr=kT(alnQr ) dJ=(dlnQI)dJ=_~dJ (6) 
a J Tt!l' d 1 [ d JI N J dv ' 

where v= V / N is the volume per lattice site. Note that 
U I has a negative value in the ordered phase and goes 
to zero as the spi ns disorder. 

INSTABILITY AND HYSTERESIS 

At a given temperature T a system is stable, at least 
locally, if the Helmholtz free energy satisfies the con­
dition (a ZA/ aV2h2::0. For the model considered above, 
this stability condition requires that 

- (apdljallh- (apr/avh2::0, (7) 

where (apr/ut'h is found from Eq. (6) to be 

(apr/atl)r= (T/ N P) CI(d J / dv)L (U r/iV J) (d2 J / N). 
(8) 

Since (ap ,ll/ Ul'h is related to (3d?, the isothermal com­
pressibility of the clisordered hUice, by 

(9) 

one can write the stability condition as 

1 tiT (dJ)2 lIUI(IPJ) ---. -C1 - -- - >0. 
(3,Il7' N]2 dt' Xl dv2 -

(10) 

Now 1/ (3,1l7' will in general have a finite positive value 
which is a slowly varying function of temperature, while 
.I and its derivatives with respect to v will be finite 
non-zero quantities which are independent of tempera­
ture. The Ising internal energy will also be fmite at all 
temperatures; but the conligurational heat capacity at 
constant volume, C

" 
is known to approach very Jarge 

values in the vicinity of the crit ical point. The behavior 
of Cr is the crucial factor. 1f Cr approaches + 00 at 
the critical lemperature, there must be an instability 
near that point unless the p;lI-tic\e lattice is completely 
incompressible (in which case, 1/ (3,1l'l'= + 00) . This re­
sult depends only on our assumption of weak coupling 
in the model. 

For the two-dimensional Jsing model an exact ana­
lytical expression for Qr (and thus CI ) is available,1 
and Cr is known to have a logarithmic singularity at 
Tc: Equations (6)- (10) are still valid in two dimen­
sions if l ' is replaced by u, the surface area per lattice 
site, and P is understood Lo be it surface pressure 
dc:Jined by -[aA / a( :Yu )]1" In this case, the instability 
of a compressible lattice in the immediate vicinity of 
its critical point follows directly frolll Eq. (to) . This 
instability will wuse the system to undergo a spon­
taneous first-order phase transition across the unstable 
region. Associated with this first-order transition is 
the possibility of hysteresis. To illustrate these conclu-

sions we discuss below several different aspects of the 
behavior of a two-dimensional model. In this case, 
Eq. (6) allows us to easily calculate the Ising pressure 
PI from the known expression l for Ur if f and dJ/da I 

are specified. For a ferromagnet, J is simply related 
to the critica.l temperature ( J=O.44069 k1'c) and il 
is physically reasonable to expect that dJ / du<O. LeI 
us represent .T by Ihe form a/un, (where n is it small 
integer) as an illustral ive example. A typical disordered­
lauice pressure will be represented over a small range 
of u by 

Pd!= aO+al 1'- bu, 

where ao, ai, and b are positive constants. 

Constant External Pressure 

( 11) 

For a system at equilibrium uncler an external ap­
plied pressure, it is necessary that Pext= Pdl+PI. We 
treat the simplest case of zero external pressure, for 
which PI= - P,ll. Figure 1 shows a plot of PI and -Pill r 
against u at several temperatures 1\ < T2 < ... T6 < 1'7. 
An intersection of the two appropriate isotherms will 
give the.equilibriulll area u under zero external pressure 
if the stability condition (7 ) is satisfied ( that is, if 
the slope of -Pdt is grcater than that of PI)' Now 
consider the change in u with l' for Pex:t=O. As the 
temperature increases from 1\ to T5, u can increase 
continuously from UI to Us (Points 1 to 5 on Fig. 1), 
but as 1'-t1'5 from below the system becomes unstable 
(u 2A/au2=O) at Point 5 and there must be a first! 
order change in area from (T6 to (T5'. On further heating . 
u increases continuously frolll U5' to (T7. IIowever, on 
cooling from T7 to T3 the area can decrease smoothly 
from (T7 to (T/. As 1'-t1'3 from abmlc the instability 
occurs at Point 3' and there is a first-order change 
from u/ to U J. Relow 1'J , (T cleCl'eases smoothly on 
cooling. Thus, there can be a hysteresis loop near the 
critiwl point with a first-order jump in u at 1'5 on 
heat.ing and a first-order droiJ in (T at 1'a on cooling; 
this is shown schematically in an inset on Fig. 1. The I 

values 1'3 and Ts ddermine the maximum width of this 
loop since the system becomes mechallically unstable 
at Points 5 and 3'. Actually, there is it temperature T4 I 

for which the free energy at Point -t equals that at 
Point 4'; complete thermodynamic equilibrium would 
give a first-order transition at T4 and no hysteresis. 
The region bet ween J and 5 on heati ng or J' and 3' on 
cooling is only metastable, It is easy to show that a 
Maxwell equal-area rule is valid for determining T4 in 
this system. I 

The lower inset on Fig. 1 presents a schematic sketch 
of the temperature dependence of 1/ (31' in the critical 
region. On warming, as Ts is approached from below, 
1/ (37' approaches zero and then jumps to the value B 
after the first-order transition occurs. On cooling, as 
T3 is approached from abOt'e, 1/ (37' vanishes and jumps 
to the value 11 after the transition. If the system is in 
complete thermodynamic equilibrium, l / (3T never van-
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