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Thus, we can define a spin (or Ising) pressure by

pr=—1(0A41/dV)r; this contribution to the total pres-

sure is directly related to the Ising energy Uy by

01n(),> a7 (:Hn(),) dJ U dJ
aJ JpdV \ dll ]dvV

=#1( L ®
f) NJ dv
where v= 1V /N is the volume per lattice site. Note that
Ur has a negative value in the ordered phase and goes
to zero as the spins disorder.

INSTABILITY AND HYSTERESIS

At a given temperature 7" a system is stable, at least
locally, if the Helmholtz free energy satisfies the con-
dition (824 /9V*)>0. For the model considered above,
this stability condition requires that

= (r')pd,/ar)T— (a/)[/(')’ll)rz 0,
where (dpr/dv)p is found from LEq. (6) to be

(0pr/dv)p= (T/N J?*)Cr(dJ/dv)*— (U/NJ) (d*J /dv").

(8)
Since (dpar/dv)r is related to Ba”, the isothermal com-
pressibility of the disordered lattice, by

(7)

1/Ba"=—2v(dpar/dv)r (9)
one can write the stability condition as
1 T dJ\* oUg/d*T

st e[ v | o e B, (10)
BaT NJ?* "\dv N J\d»?

Now 1/8," will in general have a finite positive value
which is a slowly varying function of temperature, while
J and its derivatives with respect to » will be finite
non-zero quantities which are independent of tempera-
ture. The Ising internal energy will also be finite at all
temperatures; but the configurational heat capacity at
constant volume, Cy, is known to approach very large
values in the vicinity of the eritical point. The behavior
of Cris the crucial factor. If C'r approaches -+ o at
the critical temperature, there must be an instability
near that point unless the particle lattice is completely
incompressible (in which case, 1/84"= -+ ). This re-
sult depends only on our assumption of weak coupling
in the model.

IFor the two-dimensional Ising model an exact ana-
Iytical expression for Qr (and thus Cy) is available,!
and Cr is known to have a logarithmic singularity at
T, Equations (6)-(10) are still valid in two dimen-
sions if » is replaced by ¢, the surface area per lattice
site, and p is understood to be a surface pressure
defined by —[d4/3d(Na) Jp. In this case, the instability
of a compressible lattice in the immediate vicinity of
its critical point follows directly from Eq. (10). This
instability will cause the system to undergo a spon-
taneous first-order phase transition across the unstable
region. Associated with this first-order transition is
the possibility of hysteresis. To illustrate these conclu-
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sions we discuss below several different aspects of the
behavior of a two-dimensional model. In this case,
Eq. (6) allows us to easily calculate the Ising pressure
pr from the known expression! for Uy if J and d.J/de
are specified. For a ferromagnet, J is simply related
to the critical temperature (J=0.44069 k7.) and it
is physically reasonable to expect that dJ/de<0. Let
us represent J by the form «/o", (where n is a small
integer) as an illustrative example. A typical disordered-
lattice pressure will be represented over a small range
of o by

par=aytaT—bo, (11)

where ag, a1, and b are positive constants.

Constant External Pressure

For a system at equilibrium under an external ap-
plied pressure, it is necessary that pexy=pau-t+pr. We
treat the simplest case of zero external pressure, for
which p;y=— pau. Figure 1 shows a plot of p; and —py
against o at several temperatures 77 < Ty<+++Ts< T},
An intersection of the two appropriate isotherms will
give the-cquilibrium area o under zero external pressure
if the stability condition (7) is satisfied (that is, if
the slope of —pa is greater than that of pr). Now
consider the change in ¢ with 7" for pe=0. As the
temperature increases from 7% to 7%, ¢ can increase
continuously from ¢y to o5 (Points 1 to 5 on Iig. 1),
but as 7—7 from below the system becomes unstable
(0*°4/80*=0) at Point 5 and there must be a first:
order change in area from o5 to 5’. On further heating .
o increases continuously from o3’ to o7. However, on
cooling from 7% to 7% the arca can decrease smoothly
from o7 to oy/. As T—7T; from above the instability
occurs at Point 3’ and there is a first-order change
from o3’ to o Below 7%, o decreases smoothly on
cooling. Thus, there can be a hysteresis loop near the
critical point with a first-order jump in o at 7% on
heating and a first-order drop in o at 7% on cooling;
this is shown schematically in an inset on I'ig. 1. The |
values 73 and 7% determine the maximum width of this
loop since the system becomes mechanically unstable
at Points 5 and 3’. Actually, there is a temperature T}
for which the free energy at Point 4 equals that at
Point 4’; complete thermodynamic equilibrium would
give a first-order transition at 7% and no hysteresis, |
The region between 4 and 5 on heating or 4’ and 3’ on |
cooling is only metastable. It is easy to show that a |
Maxwell equal-area rule is valid for determining 7 in |
this system. !

The lower inset on Fig. 1 presents a schematic sketch |
of the temperature dependence of 1/87 in the critical
region. On warming, as 7% is approached from below,
1/B7 approaches zero and then jumps to the value B
after the first-order transition occurs. On cooling, as
75 is approached from above, 1/87 vanishes and jumps |
to the value A after the transition. If the system is in
complete thermodynamic equilibrium, 1/8” never van-
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